Stellar evolution-Birth to Death Dr. Bob Benjamin-Physics Dept.-U. of Wisconsin-Madison

• Chandra X-ray observatory of the Cas A supernova remnant.

• Note the dot right at the center!

PRC96-38b • ST Scl OPO • January 22, 1997 A. Caulet (European Southern Observatory) and NASA

Triumph of 20th Century Physics

• Mass conservation

• Hydrostatic equilibrium

• Thermal equilibrium

• Radiative diffusion

$$\frac{dM_r}{dr} = 4\pi r^2 \rho$$

$$\frac{dP}{dr} = -\frac{GM_r \rho}{r^2}$$

$$\frac{dL_r}{dr} = \varepsilon_{nuc} - \varepsilon_{neutrino}$$

$$L_r = -4\pi r^2 \frac{4ac}{3\rho\kappa} T^3 \frac{dT}{dr}$$

After three centuries of work, we have a reasonably complete picture for how stars evolve over time!

The Main Sequence

"New" Members of the Main Sequence

• A "methane" or T dwarf discovered two years ago located only 30 light years from Earth!

Evolution and Lifetimes

Stellar Lifetimes = Nuclear Fuel / **Luminosity** $= \mathbf{M} / \mathbf{M}^4$ = M⁻³ Hot stars burn bright, and burn out. **Cools stars conserve** fuel, last longer.

Hubble Space Telescope Image of Planetary Nebula NGC 7027

The Death of the Sun

- Sun will run out of fuel in about 4-5 billion years.
- Core heats up, outer layers expand to about orbit of Mars.
- Outskirts of red giant star detach from sun, blown outward.
- Center cools to a white dwarf.
- Details depend on rotation, magnetic fields, and companions.

White Dwarf Stars

White Dwarf Stars in Globular Cluster M4HSTWFPC2NASA and H Richer (University of British Columbia)STScI-PRC02-10

• Held up by "degeneracy pressure. Electrons resist being squeezed together.

• Density =10⁶ gm/cm³

• About the size of the Earth, mass of 0.6-1.4 M_{sun}

• Cool like bricks. By looking at temperature, we can estimate the age.

• Picture shows a region of 1 light year across, 8 hours of HST time.

•Age of white dwarfs in the globular cluster M4 =12-13 billion years old.

Binary Systems and Novae

Novae are runaway nuclear surface flashes of on the surface of a white dwarf in binary systems.
These flashes occur every ten to thousand years.
Not clear whether mass builds up or blows off over time.

Supernovae

HST image of SN 1987 A in the Large Magellanic Clouds • Stars more massive than ~8 x Sun cannot be supported by electron degeneracy pressure when they run out of nuclear fuel.

- Core collapse!
- Huge release of nuclear energy.
- Formation of all elements heavier than iron.
- End product? (Nothing?), neutron star, (quark star?), black hole.

Supernovae in the Universe

ESO 184-G82

100 million light years away.

Inset : expanded view of star-forming region, 300 light-years across. Supernova light reached earth April 25, 1998. A source of a gamma-ray burst?

Hypernovae and Gamma Ray Bursts 2704 BATSE Gamma-Ray Bursts

Gamma-ray burst may be particular powerful supernova explosion, the coalescence of two neutron stars, or something unthought of.

Supernova Remnants

Supernova explosion produces vast regions of hot gas, which last for 100,000 years before dissipating into the general interstellar medium.

Crab Nebula

•Explosion observed in 1054 AD

Neutron Stars

Discovery of a neutron star in the supernova remnant IC 443 using Chandra X-ray Obs.

- Size of New York City (10 km).
- Density of ~4 x 10¹⁴ gm/cm³
- 1 cm³ of N.S.=mass of humanity
- Supported by neutron degeneracy pressure.
- Exact physics of nuclear matter not as well understood.
- Mostly detected as radio pulsars from spinning cone of radio emission?
- Can also detect via X-ray emission from hot surface (but faint!!)

Neutron Stars in the Interstellar Medium

Bow shock around a runaway neutron star RX J1856.5-3754 (seen in emission from ionized gas)

Possible Stellar Contrail?

9^h44^m00^s

Quark Stars?

RX J1856.5-3754 Dr. Jeremy Drake • T=700,000 K implies D=5.65 km Too small for a neutron star? 3C58 (SN 1181) Dr. Patrick Slane SNR age=821 years T< 100,000 K Too cold for a neutron star?

Black Holes("Frozen Stars")

Black holes: The reality

V4641 Sgr- Radio emission from the closest black hole candidate (d=1500 light-years)

$$R_{Sch} = \frac{2GM}{c^2}$$

Black holes: The artist's imagination

X-ray emission powered by magnetic and gravitational heating as material falls into a black hole.

Event horizon: Distance where even light cannot escape.

• Requires general relativity to work out physical properties of black holes

Supermassive Black Holes

Panoramic View of the Center of the Milky Way

Q. D. Wang-Chandra X-ray Observatory

• There is evidence for supermassive (> $10^6 M_{sun}$) black holes in the center of many galaxies. We don't know why they are there.

• Galaxies are the challenge for the 21st century...

References

The images used here were taken from several web sites including

• The Chandra X-ray Observatory

http://www.chandra.harvard.edu

• The Hubble Space Telescope

http://www.stsci.edu

• Astronomy Picture of the Day

http://antwrp.gsfc.nasa.gov/apod/

• Bob Benjamin' s home page

http://wisp.physics.wisc.edu/~benjamin