
Professor Eric Wilcots

Associate Professor
Department of Astronomy
University of Wisconsin - Madison
Madison, WI 53706
608-262-2364

ewilcots@astro.wisc.edu

Matter in the Universe June 19, 2002

BLUE . FOW × 103 K YOUAN = 107 K

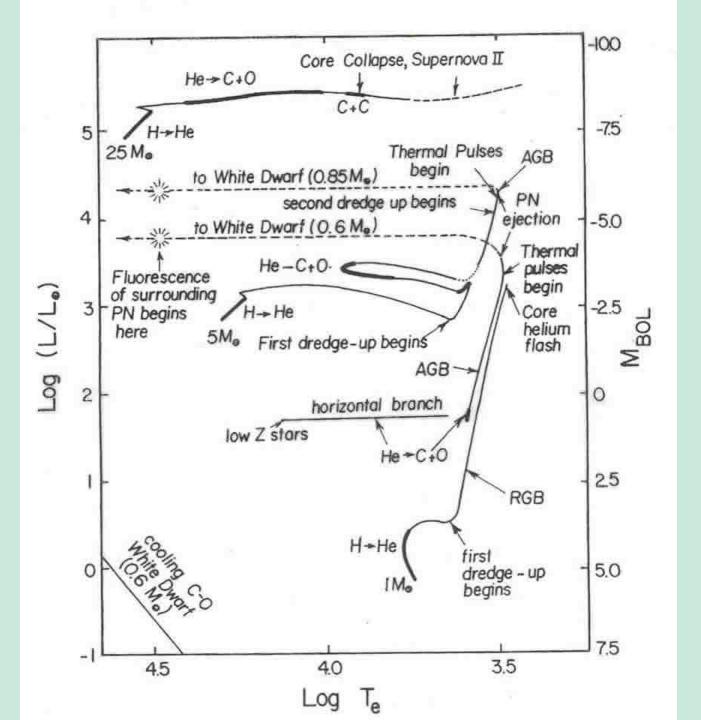
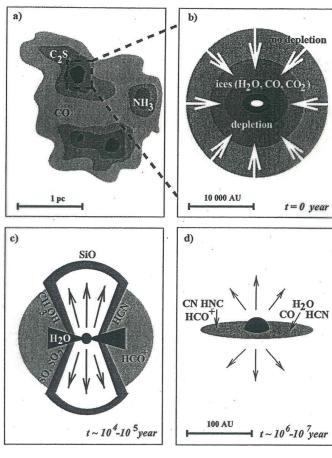
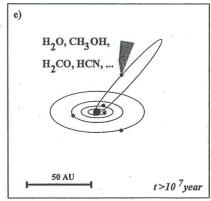




TABLE 1. Gas Phase Interstellar/Circumstellar Molecules - High Resolution (11/96)

H ₂	CH	CH ⁺	NH	OH
C_2	CN	CO	CSi	CP
CS	NO	NS	SO	HCl
NaCl	KCl	AlCl	AIF	PN
SiN	SiO	SiS	CO+	so+
H_3^+	CH ₂	NH ₂	H ₂ O	H ₂ S
C_2H	HCN	HNC	HCO	HCO+
HOC+	HN ₂ ⁺	HNO	HCS+	C ₃
C_2O	C ₂ S	SiC ₂	SO ₂	OCS
MgNC	MgCN	N ₂ O	NaCN	NH ₃
H ₂ CO	H ₂ CS	HCCH	HCNH+	H ₂ CN
C ₃ H (lin)	c-C ₃ H	HCCN	HNCO	HOCO+
HNCS	C2CN	C ₃ O	H ₃ O ⁺	C ₃ S
CH ₄	SiH ₄	CH ₂ NH	H ₂ C ₃ (lin)	c-C ₃ H ₂
CH ₂ CN	NH ₂ CN	CH ₂ CO	нсоон	C ₄ H
HC ₂ CN	HCCNC	HNCCC	C ₄ Si	H ₂ COH ⁺
C ₅	CH ₃ OH	CH ₃ SH	C_2H_4	CH ₃ CN
CH ₃ NC	HC2CHO	NH ₂ CHO	HC ₃ NH ⁺	H ₂ C ₄ (lin)
C ₅ H	CH ₃ NH ₂	CH ₃ CCH	CH ₃ CHO	C ₂ H ₃ CN
C ₆ H	HC4CN	C ₈ H	HCOOCH3	CH ₃ COOH
CH ₃ C ₂ CN	CH ₃ OCH ₃	C ₂ H ₅ OH	C ₂ H ₅ CN	CH ₃ C ₄ H
HC ₆ CN	CH ₃ COCH ₃	CH ₃ C ₄ CN?	NH2CH2COOH?	HC ₈ CN

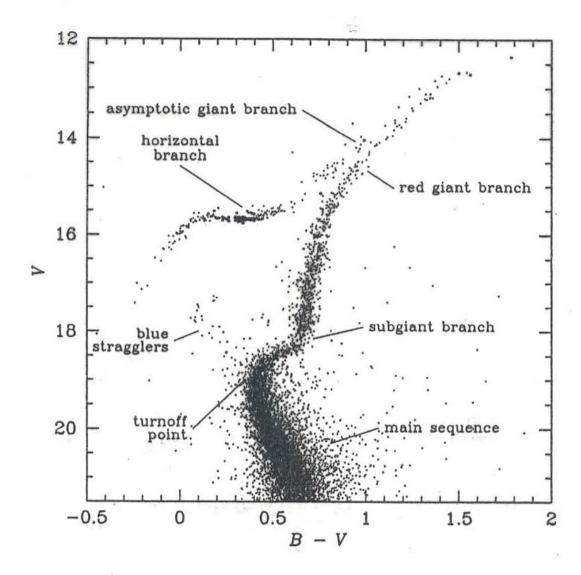
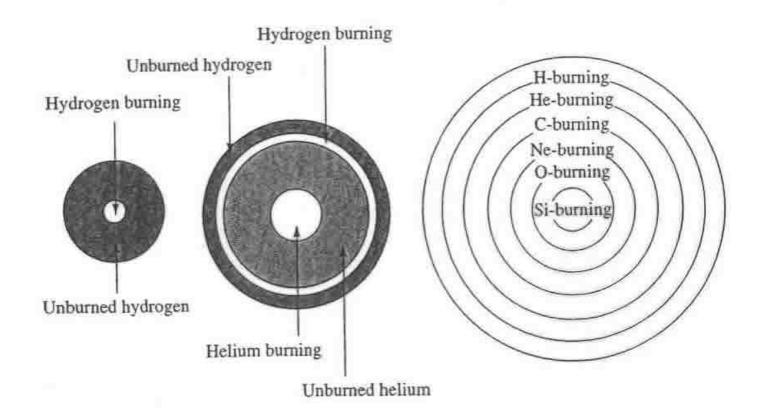



Figure 6.2 The color-magnitude diagram for the globular cluster M3. Known variable stars are shown as open circles, and the principal sequences are annotated. [From data published in Buonanno et al. (1994)]

$$p+n \longrightarrow d+\gamma$$

 $d+d \longrightarrow {}^{3}\text{He}+n, {}^{3}\text{H}+p$
 ${}^{3}\text{He}+d \longrightarrow {}^{4}\text{He}+p$
 ${}^{3}\text{H}+d \longrightarrow {}^{4}\text{He}+n$
 ${}^{3}\text{H}+\alpha \longrightarrow {}^{7}\text{Li}+\gamma$
 ${}^{3}\text{He}+\alpha \longrightarrow {}^{7}\text{Be}+\gamma$
 ${}^{7}\text{Be}+n \longrightarrow {}^{7}\text{Li}+p$
 ${}^{7}\text{Li}+p \longrightarrow 2{}^{4}\text{He}$

Name of process	Fuel	Products	Temperature
Hydrogen-burning	Н	Не	$60 \times 10^6 \text{ K}$
Helium-burning	He	C, 0	$200 \times 10^{6} \text{ K}$
Carbon-burning	C	O, Ne, Na, Mg	$800 \times 10^{6} \text{ K}$
Neon-burning	Ne	O, Mg	1500×106 K
Oxygen-burning	0	Mg to S	$2000 \times 10^{6} \text{ K}$
Silicon-burning	Mg to S	Elements near Fe	$3000 \times 10^6 \text{ K}$

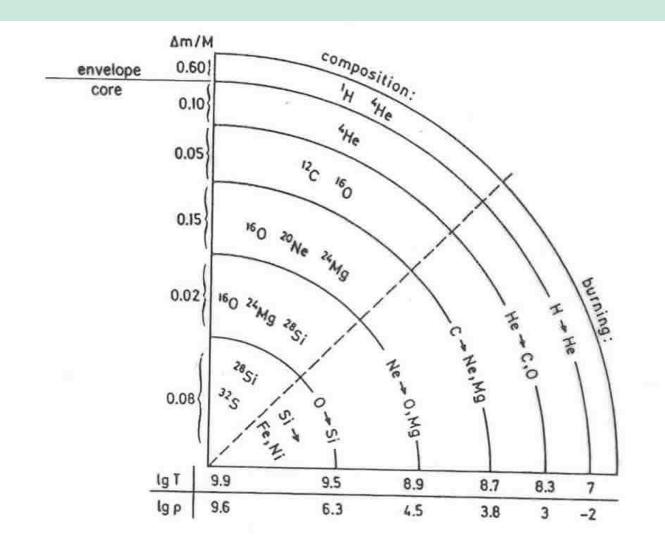


Fig. 5.8. Schematic illustration (not to scale) of the 'onion-skin' structure' in the interior of a highly evolved massive star $(25M_{\odot})$. Numbers along the vertical axis show some typical values of the mass fraction, while those along the horizontal axis indicate temperatures and densities (gm cm⁻³). Adapted from R. Kippenhahn & A. Weigert, Stellar Structure and Evolution, Springer-Verlag 1990.

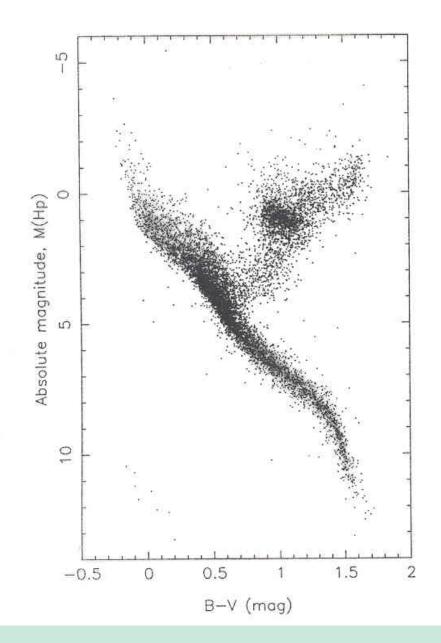


Figure 3.5 The CM-diagram for 10793 stars with good Hipparcos parallaxes. The great majority of stars fall along the MS that runs diagonally from bottom right to top left. The subgiant, red giant, and white-dwarf sequences are also apparent, as is the red clump. The MS and WD stars were selected to have parallaxes with errors smaller than 10%, while the giants were chosen to have parallaxes in error by < 20%. [After Perryman et al. (1995) courtesy of M. Perryman]

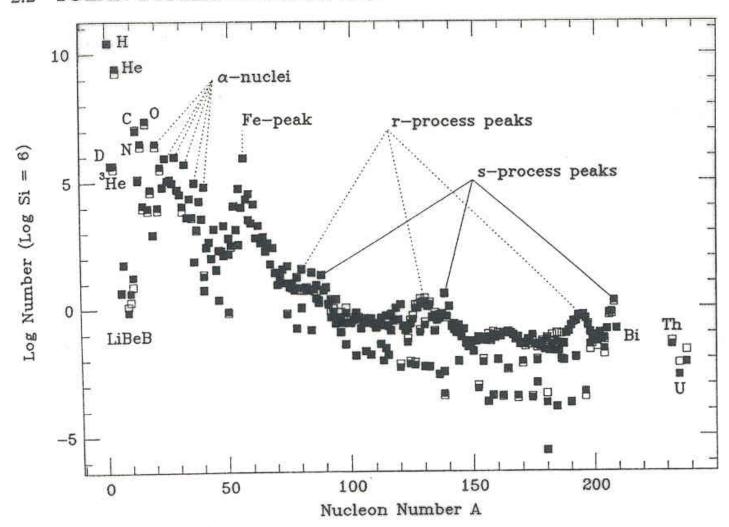


Fig. 2.1. Abundance Features